the Aristotelian p^q-lattices

[ p^q-semantics | p^q-lattices | n*p^q-parallelepiped | p^2-structures | p^3-structures | p^4-structures | p^5-structures | … | p^q-structures ] – back to structures


NOTChangingAristotelianPQLattices The “Aristotelian pQ-lattices” are the combinatorial outcomes of Moretti’s “Aristotelian pQ-semantics”. As such they display order-theoretically the possible “opposition qualities” (a generalisation of the classical notions of “contradiction”, “contrariety”, “subcontrariety” and “subalternation”, reconduced by Moretti to the notions of “Aristotelian (2 power 2)-semantics” and “Aristotelian (2 power 2)-lattice”).


2^2-lattice | 2^3-lattice | 2^4-lattice | 2^5-lattice | … | 2^q-lattice

3^2-lattice | 3^3-lattice | 3^4-lattice | 3^5-lattice | … | 3^q-lattice

4^2-lattice | 4^3-lattice | 4^4-lattice | 4^5-lattice | … | 4^q-lattice

5^2-lattice | 5^3-lattice | 5^4-lattice | 5^5-lattice | … | 5^q-lattice

……………. | ……………. | …………… | ……………. | … | ………………

p^2-lattice | p^3-lattice | p^4-lattice | p^5-lattice | … | p^q-lattice


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s