the Aristotelian p^q-semantics

[ p^q-semantics | p^q-lattices | n*p^q-parallelepiped | p^2-structures | p^3-structures | p^4-structures | p^5-structures | … | p^q-structures ] – back to structures


NOTChangingAristotelianPQSemantics The Aristotelian pQ-semantics are a game-theoretical ask-answer device necessary and sufficient to generate the oppositional complexity of OG. They are a generalisation, by Moretti, of Aristotle‘s combinatorial definitions of “contradiction” and “contrariety” (which Moretti reduced, by a suited mathematical forcing, to the new structure of “Aristotelian (2 power 2)-semantics”). These semantics allow having Aristotelian pQ-lattices, from which all “oppositional kinds” can be retrieved. It is these semantics and lattices which, among others, allow stepping from the “logical bi-simplexes of dimension m” (to which belong the logical square, hexagon and cube) to the general “logical p-simplexes of dimension m“.


2^2-semantics | 2^3-semantics | 2^4-semantics | 2^5-semantics | … | 2^q-semantics

3^2-semantics | 3^3-semantics | 3^4-semantics | 3^5-semantics | … | 3^q-semantics

4^2-semantics | 4^3-semantics | 4^4-semantics | 4^5-semantics | … | 4^q-semantics

5^2-semantics | 5^3-semantics | 5^4-semantics | 5^5-semantics | … | 5^q-semantics

…………………. | …………………. | ………………… | ………………… | … | ………………….

p^2-semantics | p^3-semantics | p^4-semantics | p^5-semantics | … | p^q-semantics


Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s