the α3-structure (logical hexagon)

[ α1-structure | α2-structure | α3-structure | α4-structure | α5-structure | αn-structure | α-fragments ] – α-structures

NOT.08.LogicalHexagons The logical hexagon seems to have been discovered independently by Jacoby (1950), Sesmat (1951) and Blanché (1953), by adding to the classical “AEOI” logical square (according to the medieval terminology) the “U” and the “Y” positions (“U” is the logical disjunction of “A” and “E”, whereas “Y” is the logical conjunction of “I” and “O”). It is the first known proper avatar of the logical square (the “AUEOYI” hexagon contains 3 logical squares, among which the classical “AEOI” one). In this respect, remark that it admits all the kinds of decorations (quantificational, modal, order-theoretical, etc.) which were admitted by the logical square. But despite of its formal, mathematical strength (look, for instance, at the 3 symmetry axes of the logical hexagon, whereas the logical square has only one), its discovery has not been much noticed (neither by pure logicians, nor by analytical philosophers), at least until Béziau (2003) used it in a controversy he held (with others) against a famous argument by Slater (1995), about the question of knowing if logical paraconsistency is a possible formal behaviour. By taking into account the 2 “null modalities” (the “zero modality” and its negation) Béziau discovered the existence of 2 new alethic decorations of the logical hexagon.

Later Moretti and Smessaert discovered further alethic decorations and Pellissier discovered the existence of so-called “broken” (or “weak”) logical hexagons. In 2004 Moretti has shown that the logical square and the logical hexagon are followed by a logical cube and that the three of them (seen respectively as a 2-, a 3- and a 4-opposition) are particular instances of a more general structure, that of the logical bi-simplexes of dimension m (seen as a n-opposition, with n=m+1). More precisely, in the light of Moretti’s later theory of the logical poly-simplexes of dimension m (2009), the logical hexagon is a “logical bi-triangle”, whose possible immediate avatars are, therefore, the logical bi-tetrahedron (this is the aforementioned logical cube) and the “logical tri-triangle”.

Remark that the logical hexagon has been used by Gallais (1982) for building a new model of narratology.

  • Angot-Pellissier, R., « 2-opposition and the topological hexagon », in: Béziau J.-Y. and Payette G. (eds.), The Square of Opposition. A General Framework for Cognition, Peter Lang, Bern, 2012
  • Jean-Yves Béziau,  “New Light on the Square of Opposition and its Nameless Corner”, in: Logical Investigations, 10, 2003
  • Béziau, J.-Y., “The Power of the Hexagon”, Logica Universalis, 6 (1-2), 2012
  • Blanché, R., “Sur l’opposition des concepts”, Theoria, 19, 1953
  • Blanché, R., “Opposition et négation”, Revue Philosophique, 167, 1957
  • Blanché, R., “Sur la structuration du tableau des connectifs interpropositionnels binaires”, Journal of Symbolic Logic, 22, 1, 1957
  • Blanché, R., Structures intellectuelles. Essai sur l’organisation systématique des concepts, Vrin, Paris, 1966
  • Blanché, R., Raison et discours. Défense de la logique réflexive, Vrin, Paris, 1967
  • Blanché, R., “Sur le système des connecteurs interpropositionnels”, Cahiers pour l’Analyse, 10, 1969
  • Bonfiglioli, S., “Aristotle’s Non-Logical Works and the Square of Oppositions in Semiotics”, Logica Universalis, 2, 1, 2008
  • Gallais, P., Dialectique du récit médiéval (Chrétien de Troyes et l’hexagone logique), Rodopi, Amsterdam, 1982
  • Guitart, R., “A Hexagonal Framework of the Field F4 and the Associated Borromean Logic”, Logica Universalis, 6 (1-2), 2012
  • Jacoby, P., “A triangle of opposites for types of propositions in Aristotelian logic”, New Scholasticism, 24, 1950
  • Jaspers, D., “Logic of Colours in historical Perspective”, Logica Universalis, 6 (1-2), 2012
  • Kalinowski, G., “Axiomatisation et formalisation de la théorie hexagonale de l’opposition de M. R. Blanché”, Les études philosophiques, 22, 1967
  • Kalinowski, G., La logique des normes, PUF, Paris, 1972
  • Kalinowski (1980?)
  • Kalinowski, G., “Carré sémiotique et carré logique”, Le Bulletin du Groupe de recherches sémio-linguistiques, 17, 1981
  • Moretti, A., « Geometry for Modalities? Yes: Through N-Opposition Theory », in: Béziau J.-Y., Costa-Leite A. and Facchini A. (eds.) Aspects of Universal Logic, N.17 of Travaux de logique, Université de Neuchâtel, December 2004
  • Moretti, A., The Geometry of Logical Opposition, PhD Thesis, Université de Neuchâtel, Switzerland, 2009
  • Moretti, A., « The Critics of Paraconsistency and of Many-Valuedness and the Geometry of Opposition », Logic and Logical Philosophy, …, 2010
  • Moretti, A., “Why the Logical Hexagon?”, Logica Universalis, 6 (1-2), 2012
  • Moretti, A., « Arrow-Hexagons », in: Buchsbaum A. and Koslow A. (eds.), The Road to Universal Logic – Vol. II, Birkhäuser, Basel, 2015
  • Moretti, A., « Le retour du refoulé: l’hexagone logique qui est derrière le carré sémiotique », in: Ben Aziza H. (ed.), Le carré et ses extensions: approches théoriques, pratiques et historiques, Publications de la faculté des sciences humaines et sociales de Tunis, Université de Tunis, 2015
  • Nicolas, F., “Les secrets de la langue arabe qu’une musique pourrait entreprendre d’avouer…”, Al-Mukhatabat, N.1, 2012
  • Pellissier, R., « ‘Setting’ n-opposition », (pre-final draft), Logica Universalis, 2, 2, 2008
  • Sauriol, P., “Remarques sur la Théorie de l’hexagone logique de Blanché”, Dialogue, 7, 1968
  • Sauriol, P., “La structure tétrahexaédrique du système complet des propositions catégoriques”, Dialogue, 15, 1976
  • Sesmat, A., Logique – II. Les raisonnements, la logistique, Hermann, Paris, 1951
  • Smessaert, H., “On the 3D visualisation of logical relations”, Logica Universalis, 3, 2, 2009
  • Smessaert, H., « The Classical Aristotelian Hexagon Versus the Modern Duality Hexagon », Logica Universalis, 6 (1-2), 2012
  • Smessaert H. and Demey L., “Logical Geometries and Information in the Square of Oppositions”, Journal of Logic, Language and Information, …, 2014

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s